Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Environ Sci Technol ; 52(4): 1908-1918, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29356510

RESUMEN

Several types of engineered nanoparticles (ENPs) are being considered for direct application to soils to reduce the application and degradation of pesticides, provide micronutrients, control pathogens, and increase crop yields. This study examined the effects of different metal ENPs and their dissolved ions on the microbial community composition and enzyme activity of agricultural soil amended with biosolids. The activity of five extracellular nutrient-cycling enzymes was measured in biosolid-amended soils treated with different concentrations (1, 10, or 100 mg ENP/kg soil) of silver (nAg), zinc oxide (nZnO), copper oxide (nCuO), or titanium dioxide (nTiO2) nanoparticles and their ions over a 30-day period. At 30 days, nZnO and nCuO either had no significant effect on soil enzyme activity or enhanced enzyme activity. In contrast, Ag inhibited selected enzymes when dosed in particulate or dissolved form (at 100 mg/kg). nTiO2 either had no significant effect or slightly decreased enzyme activity. Illumina MiSeq sequencing of microbial communities indicated a shift in soil microbial community composition upon exposure to high doses of metal ions or nAg and negligible shift in the presence of nTiO2. Some taxa responded differently to nAg and Ag+. This work shows how metal ENPs can impact soil enzyme activity and microbial community composition upon introduction into soils amended with biosolids, depending on their type, concentration, and dissolution behavior, hence providing much needed information for the sustainable application of nanotechnology in agriculture.


Asunto(s)
Nanopartículas del Metal , Microbiota , Contaminantes del Suelo , Agricultura , Suelo , Microbiología del Suelo
3.
Environ Sci Technol ; 50(24): 13318-13327, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993044

RESUMEN

Ag nanoparticles (nAg) are used in various consumer products and a significant fraction is eventually discharged with municipal wastewater (WW). In this study we assessed the release of Ag from polyvinylpyrrolidone (PVP)- and citrate-coated 80 nm nAg in aerobic WW effluent and mixed liquor and the related changes in nAg size, using single particle ICP-MS (spICP-MS). The concentration of dissolved (nonparticulate) Ag in WW effluent was 0.89 ± 0.05 ppb at 168 h and was 71% lower than in deionized (DI) water, in batch reactors spiked with 5 × 106 PVP-nAg particles/mL (10 µg/L), an environmentally relevant concentration. Dissolved Ag in WW was partly reformed into ∼22 nm nAgxSy by inorganic sulfides and organosulfur dissolved organic carbon (DOC) after 120 h, whereas the parent nAg mean diameter decreased to 65.89 ± 0.9 nm. Reformation of nAgxSy from Ag+ also occurred in cysteine solutions but not in DI water, or humic and fulvic acid solutions. Dissolution experiments with nAg in WW mixed liquor showed qualitatively similar dissolution trends. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS) analyses indicated binding of thiol- and amine-containing DOC as well as inorganic sulfides with nAg. Those WW components, as well as limited dissolved oxygen, decreased dissolution in WW.


Asunto(s)
Plata/química , Aguas Residuales/química , Nanopartículas del Metal/química , Solubilidad , Contaminantes Químicos del Agua/química
4.
Artículo en Inglés | MEDLINE | ID: mdl-23007759

RESUMEN

We report the piezoelectric and ferroelectric properties of individual one-dimensional objects made of Bi(4)Ti(3)O(12) (BiT). The nanorods and nanowires investigated in this study were fabricated by a two-step process: 1) preparation of reactive templates using hydrothermal-like synthesis and colloidal chemistry and 2) transformation of the reactive templates in Bi(4)Ti(3)O(12) by solid-state reaction, overcoming the morphological instability problem of 1-D templates. Using piezoresponse force microscopy (PFM) with both out-of-plane and in-plane detection capability, we show that both types of objects exhibit strong piezoelectric activity and good switching ferroelectric behavior. Analysis of the PFM hysteresis loops obtained revealed that the coercive voltage of the in-plane PFM signal can be either equal to or different from that of the out-of-plane response. We associate these situations with two types of polarization switching mechanisms: direct 180° switching, and via rotation of polarization, resulting from the independent switching of the components along the a- and ccrystallographic axes. In a few instances, we observe a negative piezoelectric coefficient, which we explain by the specific shape of the piezoelectric surface of Bi(4)Ti(3)O(12).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...